目的 研究黄芩提取物(SGE)对脂多糖(LPS)诱导BV2细胞炎症反应的作用,并探讨其可能的作用机制。方法 四甲基偶氮唑蓝(MTT)法检测细胞存活率;Griess试剂检测细胞上清中NO水平;ELISA法检测细胞上清中白细胞介素(IL)-1β、IL-6、肿瘤坏死因子(TNF)-α水平;Western Blot检测BV2细胞中TLR4蛋白的表达。结果 与正常对照组比较,LPS诱导BV2细胞上清中NO、IL-1β、IL-6、TNF-α水平显著增高(P<0.01);与LPS模型组比较,SGE 100 μg·mL-1显著降低LPS诱导的BV2细胞上清中炎症因子NO (P<0.01)、IL-1β (P<0.01)、IL-6 (P<0.01)、TNF-α (P<0.05)水平。深入研究发现,SGE可显著降低LPS诱导BV2细胞中TLR4蛋白的表达。结论 SGE能够显著抑制LPS所诱导的BV2细胞炎症反应,机制可能与抑制TLR4炎症通路相关。
Abstract
OBJECTIVE To investigate the anti-inflammatory effects of extract of Scutellaria baicalensis Georgi (SGE) and underlying mechanism by using LPS-induced microglial BV2 cells. METHODS MTT assay was used to observe the cell viability. The content of NO in cell supernatant was measured by Griess reagent. The levels of IL-1β, IL-6 and TNF-α were detected by ELISA kits. The intracellular TLR4 expression was assayed by Western blotting. RESULTS The levels of NO, IL-1β, IL-6 and TNF-α were significantly increased induced by LPS in the supernatant of BV2 cells (all P<0.01). However, co-treatment with SGE 100 μg·mL-1 significantly decreased the production of related inflammatory factors including NO (P<0.01), IL-1β(P<0.01), IL-6 (P<0.01) and TNF-α (P<0.05). Furthermore, SGE significantly inhibited the TLR4 expression induced by LPS in BV2 cells. CONCLUSION SGE is able to alleviate LPS-induced inflammatory responses in BV2 cells through down-regulation of TLR4 protein expression suggesting that SGE has therapeutic potential for the treatment of neuroinflammatory diseases.
关键词
黄芩提取物 /
脂多糖 /
BV2细胞 /
神经炎症
{{custom_keyword}} /
Key words
Scutellaria baicalensis Georgi extract /
lipopolysaccharide /
BV2 cells /
neuroinflammation
{{custom_keyword}} /
中图分类号:
R965
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WEN H Z, XIAO S Y, WANG Y M, et al. General situation of chemical constitutions and drug-processing of Scutellaria baicalensis Georgi[J]. Nat Prod Res Dev (天然产物研究与开发), 2004, 6(16): 575-580.
[2] ZHANG X P, TIAN H, CHENG Q H. The current situation in pharmacological study on baicalin [J]. Chin Pharmacol Bull (中国药理学通报), 2003, 19(11): 1212-1215.
[3] ZHANG X, LI H, HOU M J, et al. Advances in pharmacological studies of Scutellaria baicalensis Georgi and its active constituents [J]. Tianjin Pharm (天津药学), 2001, 12(4): 8-11.
[4] KANG H, LI Q, WANG L. Study on antioxidation and hepatoprotective effect of Scutellaria baicalensis Georgi extract and baicalin [J]. Tradit Chin Med Res (中医研究),2010,23(4):27-30.
[5] YANG L, CUI X Y, ZHANG X. Antiinflammatory and immunomodulation effects of the extract of Scutellaria baicalensis Georgi[J]. J China Pharm (中国药房),2007,18(24):1856-1858.
[6] GAO G W, LI L. Study on the anti-inflammatory effect and mechanism of the extract of Scutellaria baicalensis Georgi [J]. Chin J Pharmacol(中国临床药理学杂志),2014,30(6):550-552.
[7] BURNETT B P, JIA Q, ZHAO Y, et al. A medicinal extract of Scutellaria baicalensis and acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation [J]. J Med Food, 2007, 10(3): 442-451.
[8] WANG Y H, ZENG K W, NING X L, et al. Inhibitory effects of caffeic acid phenethyl ester on inflammatory responses of microglial cells (BV-2)induced by lipopolysaccharide [J]. Chin Pharm J (中国药学杂志), 2014, 49(18): 1599-1604.
[9] VIZUETE M L, MERINO M, VENERO J L, et al. Histamine infusion induces a selective dopaminergic neuronal death along with an inflammatory reaction in rat substantia nigra [J]. J Neurochem, 2000, 75(2): 540-552.
[10] YOON S B, LEE Y J, PARK S K, et al. Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW 264.7 macrophages [J]. J Ethnopharmacol, 2009, 125(2): 286-290.
[11] KIN E H, SHIM B, KANG S, et al. Anti-inflammatory effects of Scutellaria baicalensis extract via suppression of immune modulators and MAP kinase signaling molecules [J]. J Ethnopharmacol, 2009, 126(2): 320-331.
[12] JUNG H S, KIM M H, GWAK N G, et al. Antiallergic effects of Scutellaria baicalensis on inflammation in vivo and in vitro[J]. J Ethnopharmacol, 2012, 141(1): 345-349.
[13] TAKI-NAKANO N, KOTERA J, OHTA H. 12-Oxo-phytodienoic acid, a plant-derived oxylipin, attenuates lipopolysaccharide-induced inflammation in microglia[J]. Biochem Biophys Res Commun, 2016, 473(4): 1288-1294.
[14] YUAN L, LIU S, BAI X, et al. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice[J]. J Neuroinflam, 2016, 13(1): 77. doi: 10.1186/s12974-016-0541-7.
[15] WANG D, PIAO H Z. Effects of the wogonin on LPS induced iNOS expression in BV2 cells [J]. J Med Sci Yanbian Univ (延边大学医学学报), 2011, 34(4): 265.
[16] BUCHANAN M M, HUTCHINSON M, WAKINS L R, et al. Toll-like receptor 4 in CNS pathologies[J]. J Neurochem, 2010, 114(1): 13-27.
[17] DZAYE O D, HU F, DERKOW K, et al. Glioma stem cells but not bulk glioma cells upregulate IL-6 secretion in microglia/brain macrophages via Toll-like receptor 4 signaling[J]. J Neuropathol Exp Neurol, 2016, 75(5): 429-440.
[18] VERNA I M, STEVENSON J K, SCHWARZ E M, et al. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation [J]. Genes Dev, 1995, 9 (22): 2723-2735.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金面上项目资助(81473383,81573645);中国医学科学院医学与健康科技创新工程资助(2016-I2M-3-007); 国家科技重大专项重大新药创制资助(2017ZX09101003-003-019);北京协和医学院研究生创新基金(2017-1007-02)
{{custom_fund}}